On March 16th, 2020, the French Minister of Health has recommended the use of paracetamol for the treatment of fever in patients with suspected of Coronavirus Disease 2019 (COVID-19) instead of ibuprofen or oral cortisone [1]. In this circumstance, the French Authorities have announced that NSAIDs may worsen the clinical condition of patients with COVID-19 based on the evaluation of 4 young patients affected by a severe and sustained COVID-19, with no comorbidity, and with the NSAID treatment identified as the only risk factor. Immediate was the reply from the Spanish Agency of Medicines and Medical Devices (AEMPS), which underlined that there are no scientific data to support a worsening of the infection with ibuprofen or other NSAIDs. They also announced that the relationship between the infection exacerbation and the use of ibuprofen or ketoprofen is currently evaluated by the Pharmacovigilance Risk Assessment Committee (PRAC) of the European Medicine Agency (EMA) [2], and it will be available the next May.

In the literature, conflicting results are available on the association between NSAIDs and infections. Some observational studies showed an increased risk of complications in pediatric patients with flu or infections who take NSAIDs [3,4]. A case series, published on BMJ in 2015, described two cases of H1N1 flu and history of NSAIDs abuse that developed type 1 respiratory failure, which required access to the intensive care [5]. Another study, published on BMJ in 2009, showed that the use of NSAIDs could worsen symptoms of H1N1 infection and predispose to the development of multi-organ failure [6]. The main explanation to this result is that the NSAIDs administration, through the alleviation of inflammatory symptoms (fever and pain), could impede the prompt recognition of pneumonia, delaying its diagnosis and treatment [7]. The infective inflammatory process starts with the activation of polymorphonuclear neutrophils, recruited at the site of infection, which release
reactive oxygen species (ROS), proteolytic enzymes, and antimicrobial peptides. This response also involves the cyclooxygenase type 2 (COX) [8-11].

Many studies have instead demonstrated that COX could have a protective role during infections. Specifically, Chen and colleagues showed that non-selective NSAIDs (aspirin and indomethacin) and the selective NSAID (celecoxib) inhibit the virus replication through an increase of nitric oxide levels in a model of vesicular stomatitis [12]. Other studies have demonstrated that COX-2 levels are increased in patients with an active viral infection [13-15], suggesting a possible role for COX-2 inhibitors in the control of viral infection [16, 17]. Finally, Amici and colleagues have conducted a preclinical study to evaluate the effect of indomethacin on the replication of Severe acute respiratory syndrome-coronavirus (SARS-CoV). This study showed an important anti-viral activity of indomethacin that is independent from the COX inhibition [18].

In conclusion, today, there is no clear evidence that supports the worsening of clinical conditions in patients with COVID-19 and treated with NSAIDs. No Regulatory Authority, apart from the French one, has contraindicated the use of ibuprofen or other NSAIDs for the treatment of flu symptoms. These drugs must be used according to their approved information and at the lower dose that allows a symptom reduction. Therefore, patients in chronic treatment with ibuprofen or other NSAIDs must continue their treatment as long as the PRAC does not conclude the referral on this potential association [19]. The EMA has recently published some information on the use of NSAIDs in patients affected by COVID-19 underlining the necessity of epidemiological studies to provide evidence to confute/confirm the hypothesis on the protective/damaging role of NSAIDs in patients with COVID-19 [19].

References


10.1136/bmj.b2345


